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Classical SVM



Quick intro to machine Learning
- Supervised vs unsupervised

Classification into two groups is often beneficial



Classical SVM

- A common supervised algorithm to classify is through support vector machines (SVM)

- If the data is linearly separable,
- Find the “best” hyperplane/boundary 



Classical SVM

- A common supervised algorithm to classify is through support vector machines (SVM)

- Or, use the kernel trick to put our data in a higher dimension where it become linearly separable 
when you apply a function

- Find the “best” hyperplane/boundary



Finding the boundary

- We can draw many boundaries, but one can argue that the best is one that maximizes 
the margin between the closest data point to the boundary

SVM finds the max-margin hyperplane that divides the two classes



Formulation of the problem
Given M training data points of the form

where 

Let     represent the norm to the decision boundary. The margin is 
given by two parallel hyperplanes, separated by distance           with 
no data points inside the margin



Formulation of the problem

The decision boundary of the two hyperplanes:

The training data is correctly classified if 

So for all i, 



Formulation of the problem

Goal: maximize the distance between the two hyperplanes.

Maximize distance between the two hyperplanes:

Constraint: 



Formulation of the problem

Since the problem is a quadratic program and the strong duality holds, we can take the dual.

The Lagrangian is:

Primal:  



Formulation of the problem

Since the problem is a quadratic program and the strong duality holds, we can take the dual.

The Lagrangian is:

Primal:  

Dual: 



Formulation of the problem

Dual: maximize over the Karush-Kuhn-Tucker multipliers 

Subject to: 

The hyperplane parameters are recovered and only a few of the 𝞪j’s are non-zero: these are 
the ones corresponding to the vectors that lie on the two hyperplanes.



Formulation of the problem

The result is a binary classifier for a new vector x. It will return -1 or +1. 

is the Kernel matrix

The hyperplane parameters are recovered and only a few of the 𝞪j’s are non-zero: these are 
the ones corresponding to the vectors that lie on the two hyperplanes.



Time 
Solving the dual form involves evaluating the M(M-1)/2 dot products 

Finding the optimal    𝞪j values takes O(M3). 

Each dot product takes O(N) to evaluate so the classical SVM algorithm takes

With accuracy ϵ. 



Quantum SVM



Why Quantum Machine Learning?
- Quantum computers are good at manipulating vectors and tensor products in 

high-dimensional spaces
- Classical data of N-dim complex vectors can be mapped onto quantum states of log2 N 

qubits.
- Using qRAM, storing data takes O(log2 N) steps
- Post-processing data in the quantum form takes  O(poly (log N)) 
- Evaluating distances between and inner products between large vectors takes less 

time in quantum than in the classical regime (exponentially hard)

Quantum Algorithms for supervised and unsupervised learning. (Seth Lloyd et. al)



Training



Assumptions
The paper assumes that oracles for the training data that return quantum vectors

the  norms |xj| and labels yj are given.

To efficiently construct these states, they use quantum RAM, which uses O( MN ) hardware 
resources but only O( logMN ) operations to access them.  



Kernel Matrix
- Use the inner product evaluation to prepare the kernel matrix.
- Played a crucial role in the dual formulation
- Least squares reformulation (to come!)

To prepare the normalized kernel matrix 

1. Call the training data oracles with the state

This prepares in quantum parallel the state

with  

Time: O(log NM)



Kernel Matrix
- Use the inner product evaluation to prepare the kernel matrix.
- Played a crucial role in the dual formulation
- Least squares reformulation (to come!)

To prepare the normalized kernel matrix 

If we discard the training set register, now we have the kernel matrix as a density matrix. 
They show it in the partial trace

But, finding the inverse of K requires us to do enact exponentiation efficiently 



Exponentiation

- Multiple copies of a quantum system with density matrix K can be used to construct 
the unitary transformation 

- As a result, one can perform quantum PCA, apply quantum phase algorithm to find the 
eigenvalues and eigenvectors of an unknown density matrix 

https://www.nature.com/articles/nphys3029

https://www.nature.com/articles/nphys3029


Least-squares svm

The key idea is to employ the least-squares reformulation of the svm developed in “Least 
Squares Support Vector Machine Classifiers” by Suykens et al. So, instead of quadratic 
programming, the solution involves solving a set of linear equations to obtain the 
parameters. 

Introduce slack variables ej and replace the inequality constraints with equality constraints 
(using yj

2 = 1):



Least-squares svm

The key idea is to employ the least-squares reformulation of the svm developed in “Least 
Squares Support Vector Machine Classifiers” by Suykens et al. So, instead of quadratic 
programming, the solution involves solving a set of linear equations to obtain the 
parameters. 

The implied lagrange function contains a penalty term

where 𝛾 determines the relative weight of training error 

Taking partial derivatives of the lagrange function and eliminating the variables       and ej 
leads to a least-squares approximation of the problem 



Least-squares approximation

where is the symmetric kernel matrix, and   

F is (M+1)x(M+1) dimensional. The additional row and column arise because of the non-zero 
offset b.

The 𝞪j take on the role as distance from the optimal margin. 



The SVM Parameters
The SVM parameters are determined by:

We generate the state    that describes the hyperplane with the matrix inversion 
algorithm to classify a state  

The classifier will be determined by the success probability of a swap test between
       and           

For the quantum matrix inversion algorithm,      needs to be exponentiated efficiently. (Lie 
product formula)

Phase estimation generates a state which is close to the ideal state storing the respective 
eigenvalues.
Expansion coefficients of the new state are the desired svm parameters 



Classification



Result of Training and Goal of 
Classification

● The result of training is a quantum state that encodes the offset and weight 
contributions of each support vector (in this case, it’s usually all training data)

● Now, given a new data instance, encoded as a quantum state     w, we want to classify 
it as either -1 or +1.



Swap Test
between two quantum states constructed from the hyperplane quantum state and 

the new query state



Algorithm for Classification

Preparing to measure:

1. Construct          and
2. Using an ancilla, construct        and
3. Measure ancilla

Measurement to answer:

1. To obtain P with accuracy ϵ, repeat 
measurement                            times.

2. If P < 0.5, then        belong to +1 class. 
Else, -1.



Low Rank Approximation of Kernel Matrix

● In order to calculate the inverse of F for solving least squares, we need to find 
eigenvalues and eigenvectors of F.

● Eigenvalue of F at most 1 (F is normalized), and minimum less than or equal to O(1/M)
○ (Training examples with no overlap with other training examples)

● Therefore, condition number is O(M)
○ Exponential runtime [Quantum Algorithm for solving linear systems of equations] 

● Define a ϵK, such that only eigenvalues larger than ϵK is considered
○ Filtering process in [Quantum Algorithm for solving linear systems of equations] takes into account the effective 

condition number 1/ϵK .



Low Rank Approximation of Kernel Matrix

● From data matrix                                           , construct the kernel matrix and covariance 
matrix

● These matrices have the same non zero eigenvalues
● PCA admits low rank approximation of covariance matrix by considering eigenvectors 

corresponding to largest eigenvalues



Performance Analysis



Classical SVM

● O(log(1/ϵ) M2(N+M)): 
○ Need to evaluate the M(M-1) /2 dot products, each taking O( N )
○ Find optimal alpha values by quadratic programming (O(M^3) in non sparse case)



Quantum SVM

● ds 
○ keff is the effective condition number of value 1/ϵK  with the smallest eigenvalue 

considered is ϵK 
○ ϵ is error from matrix inversion and phase estimation
○ log MN comes from kernel matrix preparation

● In summary, QSVM scales as O( log MN ). 
○ Therefore, quantum advantage in O( poly M ) training examples and O( N ) samples for inner 

product is required. 



Nonlinear QSVM



Feature mapping to higher dimensional 
feature space

● Quantum Computers can efficiently manipulate high dimensional vectors
○ Good candidates for polynomial kernel machines

● Consider simple feature map of d-times tensor product                                                     , 
so the kernel function between xj and xk becomes

● A linear hyperplane optimization in d-times tensor product space becomes a nonlinear 
surfaces in the original space.



Demo!
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