En-ROADS Climate Change Simulation

Team 17

Nick Montes, Lude Rong, Sidd Shrikanth, Haley So

Simulation Overview

Coal

Future Tax \$10/tce (20% of the sales price	Sales Price	~\$50/ton, recently increased	
	Current Tax Rate	~\$1/ton (2% of the sales price)	
Tax Start Year 2020	Future Tax	\$10/tce (20% of the sales price)	
	Tax Start Year	2020	
Tax Stop Year 2100	Tax Stop Year	2100	

Oil

Sales Price	~\$40/boe, recently increased	
Current Tax Rate	~\$20/ton (average of 50%)	
Future Tax	\$28/tce (70% of the sales price)	
Tax Start Year	2025	
Tax Stop Year	2100	

CARBON TAX (1/2)

Key Inputs

- \$50 carbon price starting in 2025, following international agreement
- Rising to \$100 (in 2011\$) by 2030

Rationale

- Major policy proposals, including those by the Climate Leadership Council, envision a starting price of roughly \$50. However, we conservatively assume that political will to continue sharp annual increases will moderate around \$100/tCO2.
- Such prices are well within the range of existing carbon markets - for instance, EU ETS credits trade in the \$30-\$40 range

CARBON TAX (2/2)

Key Takeaways

1. Energy prices would rise somewhat initially, but fall significantly over time

2. Carbon taxes would generate over \$4tn annually in the coming decade, providing substantial revenue to fund subsidies and direct payments to vulnerable populations

Transport, Buildings & Industrial

	Our Scenario	Business as Usual
Transport Efficiency	+1.7%	0.5%
Transport Electrification	+2.3%	0.0%
Bldg. & Ind. Efficiency	+2.1%	1.2%
Bldg. & Ind. Electrification	+1.5%	0.0%

Transport, Buildings & Industrial

- Reduction in local pollution
- Improved indoor and outdoor air quality

Building efficiency is a "win - win" for landlords and tenants

Requires proper financing tools
Creation of new jobs

- Promotes public transportation
- EVs price needs to drop to avoid pricing out low income groups

Protecting Forests

Propose:

- Decrease deforestation by 2% a year starting 2020
- Utilize 45% available land to regrow trees
 - 10 years to secure land
 - 30 years to grow the trees

Many benefits to preserving and planting more trees:

- Promotes carbon removal + betters air quality
- Increases number of jobs
- Helps save energy by regulating building temperature
- Lasting impacts

Methane & Gases

Propose:

- Limit % increase of agricultural and waste emissions to 1%
- Decrease energy and industry emissions by 5%

Rationale:

- Before ambitiously decreasing gas emissions, first we'll try to reach a plateau

Technological Carbon Removal

Propose:

- Increase CO2 removal from all possible approaches by 50%

Rationale:

 Moderate yet optimistic about the current technologies and future discoveries to pull CO2

Simulation Overview

