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Abstract—The ability to image high-dynamic-range (HDR) scenes is crucial in many computer vision applications. The dynamic range
of conventional sensors, however, is fundamentally limited by their well capacity, resulting in saturation of bright scene parts. To
overcome this limitation, emerging sensors offer in-pixel processing capabilities to encode the incident irradiance. Among the most
promising encoding schemes is modulo wrapping, which results in a computational photography problem where the HDR scene is
computed by an irradiance unwrapping algorithm from the wrapped low-dynamic-range (LDR) sensor image. Here, we design a neural
network–based algorithm that outperforms previous irradiance unwrapping methods and we design a perceptually inspired “mantissa,”
or log-modulo, encoding scheme that more efficiently wraps an HDR scene into an LDR sensor. Combined with our reconstruction
framework, MantissaCam achieves state-of-the-art results among modulo-type snapshot HDR imaging approaches. We demonstrate
the efficacy of our method in simulation and show benefits of our algorithm on modulo images captured with a prototype implemented
with a programmable sensor.

Index Terms—computational photography, programmable sensors, in-pixel intelligence, end–to-end optimization
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1 INTRODUCTION

H IGH Dynamic Range (HDR) imaging is crucial for a
vast range of applications, including automotive vi-

sion systems [1], HDR display [2], and image processing [3],
[4]. When capturing natural scenes, which can have an ex-
treme high dynamic range [3], the level of detail is limited by
the full well capacity and the quantization precision of the
sensor. Unfortunately, the dynamic range offered by modern
sensors is far smaller than that encountered in the wild [5],
making specialized sensors or computational photography
approaches to HDR imaging necessary.

Among the many HDR imaging techniques proposed in
the literature, exposure bracketing [6], [7], [8], [9], [10], [11]
and temporally varying exposures [12], [13], [14] can be suc-
cessful, but fast motion introduces ghosting. Multi-sensor
approaches [15], [16], [17] can overcome this limitation,
but are expensive, bulky, and difficult to calibrate. Existing
snapshot HDR imaging approaches hallucinate saturated
image detail using neural networks [18], [19], [20], [21], [22],
use spatially varying pixel exposures which trade spatial
resolution for dynamic range [23], [24], [25], [26], [27], [28],
[29], [30], or use optical encoding approaches that blur
the sensor image [31], [32], [33]. Specialized sensors, for
example recording logarithmic irradiance [34] or floating
point extended dynamic range values [35] have also been
proposed, but these either trade extended dynamic range
for precision or require additional bandwidth.
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Fig. 1: MantissaCam electronically encodes the irradiance
incident on the sensor into an LDR image by wrapping
the intensity in a perceptually inspired manner (left). The
proposed reconstruction algorithm estimates the HDR scene
from this LDR image (center) and achieves accurate recon-
structions compared to the ground truth (right).

Our work (Fig. 1) is inspired by the idea of electroni-
cally applying a modulo encoding of the irradiance on the
sensor followed by an intensity unwrapping algorithm [36],
[37]. This idea is beneficial over other snapshot approaches
because it does not degrade a low-dynamic-range (LDR)
image, as optical encoding approaches do, it does not hallu-
cinate detail but recovers them, it does not decrease image
resolution, or increase the required bandwidth. As we show
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Fig. 2: Log histogram of normalized irradiance values of
all pixels in our training and test sets of HDR images for
all color channels (top). This histogram is highly biased
towards low-intensity values, indicating that irradiance val-
ues of natural images are not uniformly distributed. Yet, the
modulo encoding subdivides this intensity range uniformly
and wraps each of these areas into the available dynamic
range of the sensor, as shown for a 1D ramp (center). The
proposed mantissa encoding wraps the same 1D ramp in
a perceptually more uniform manner in log space, which
is observed as non-uniform wrapping in irradiance space
(bottom).

in this paper, there are several downsides to the modulo
camera, as proposed in prior work. Specifically, modulo
wrapping is done directly in irradiance space, which allo-
cates precision and number of wraps linearly in this domain.
However, the human visual system is perceptually approx-
imately linear in the log-domain, so a conventional modulo
encoding wastes precision for detail that we do not perceive.
Moreover, the irradiance distribution of natural scenes is
heavily skewed towards darker values (see log-histograms
in Fig. 2), so it makes sense to nonlinearly distribute the
irradiance wraps in order to minimize their number, because
they have to be computationally unwrapped again.

We address these challenges by proposing a perceptually
inspired modulo-type wrapping scheme that operates in the
log-irradiance domain. This idea intuitively combines the
principles of operation of both log [34] and modulo [36]
cameras. Indeed, the signal we propose to measure is
essentially a generalization of the mantissa used by the
IEEE Standard for Floating-Point Arithmetic [38], or the
log base 2 of the intensity modulo the well capacity. So
instead of taking the modulo of the signal, we first take
the log, and then the modulo. We demonstrate that such
a log-modulo or mantissa camera allocates precision in a
perceptually meaningful manner and it nonlinearly dis-
tributes the wraps in irradiance space to better match the
distribution of irradiance values in natural scenes (see Fig. 2,
top). This directly leads to fewer wraps of natural scenes
(see Figs. 2, center and bottom, and 3), which make the
inverse problem of 2D irradiance unwrapping easier to
solve. To solve the unwrapping problem, we introduce a
neural network architecture that is more robust than prior
work using graph cut algorithms [36] or other network
architectures [37]. Finally, we prototype a modulo camera
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Fig. 3: Example showing an HDR Gaussian function
wrapped using the modulo and mantissa encoding in an
LDR image. For this example, the modulo encoding requires
more wraps than the mantissa encoding, which makes its
reconstruction via computational unwrapping more chal-
lenging.

using a SCAMP-5 programmable sensor [39] which allows
for flexible re-configuration of the in-pixel irradiance encod-
ing in software. These types of programmable sensors are
expected to be widely available in the near future.

Specifically, we make the following contributions

• We introduce MantissaCam as a new snapshot ap-
proach to HDR imaging, combining perceptually
motivated irradiance encoding and decoding.

• We develop a neural network architecture that out-
performs existing unwrapping methods for modulo
cameras and that demonstrates state-of-the-art per-
formance with our mantissa encoding.

• We build a prototype modulo camera and show
improved results over previous methods.

Overview of Limitations.
The SCAMP sensor we have does not include the log

circuitry needed for capturing mantissa images, but we
still demonstrate the benefits of the proposed reconstruction
algorithm on captured modulo images.

2 RELATED WORK

HDR Imaging. The limited dynamic range of conventional
camera sensors has been addressed by a number of compu-
tational imaging techniques. Exposure bracketing, for exam-
ple, fuses several low-dynamic-range (LDR) photographs
into a single HDR image [6], [7], [8], [9], [10], [11]. Tem-
porally varying exposures can also be processed to obtain
HDR videos [12], [13], [14]. Yet, slight movements in the
scene will create ghosting artifacts, which are challenging to
be removed [40]. The widely used Google HDR+ [11] burst
photography of underexposed images approach increases
read noise. So, newer HDR+ variants incorporate bracketed
exposures. Another class of approaches involves multiple
sensors to capture these LDR images simultaneously [15],
[16], [17]. Although successful, these systems are expensive,
bulky, and often difficult to calibrate.

Several approaches have been developed to estimate
an HDR image from a single input image. Reverse tone
mapping approaches aim at inverting a tone mapping op-
erator [41], [42], [43], which is an ill-posed inverse problem.
Convolutional neural networks can also be directly applied
to an LDR image to hallucinate the HDR image [18], [19],
[20], [21], [22]. Neither of these approaches, however, has the
capability to recover true image details. Bright highlights



can also be optically encoded in an LDR image [31], [32],
[33], but this approach relies on the required deconvolution
to clean up even an LDR scene perfectly to compete with the
quality of conventional sensors, which is challenging. Spa-
tially varying pixel exposures are a promising direction but,
similar to color filter arrays, they trade spatial resolution for
dynamic range [23], [24], [25], [26], [27], [28], [29], [30].

Among these, our approach to snapshot HDR imaging
is most closely related to the modulo camera [36], which
combines a modulo-type encoding of the irradiance on the
sensor combined with a reconstruction algorithm that solves
a 2D unwrapping problem. A conventional modulo oper-
ation, however, makes it difficult to distinguish between
wrapping boundaries and high-frequency image detail. We
introduce a perceptually motivated intensity wrapping tech-
nique for this class of computational cameras, which better
preserves high-frequency image detail and dynamic range,
and we also improve upon existing 2D upwrapping algo-
rithms developed for related tasks.
Unwrapping Algorithms. Phase unwrapping is a problem
often encountered in optical interferometry, where the sur-
face profile of some optical element or scene can be indi-
rectly imaged as the wrapped phase of a coherent reference
beam. A number of algorithms to unwrap these interfer-
ograms has been developed, as surveyed in [44]. When
working with wrapped intensities of natural images, instead
of optical phase values, the complex interplay of high spatial
frequencies and drastically varying light intensity has to be
accounted for. Unwrapping techniques for natural images
have been analyzed [45] and tailored algorithms devel-
oped [46], [47], [48], but these require multiple input images.
Most recently, the UnModNet network architecture was
introduced to unwrap a single intensity image with state-
of-the-art quality [37]. Our network architecture improves
upon this method for HDR imaging for modulo cameras but
shows best results when used with the proposed mantissa
encoding scheme.
Floating Point and Emerging HDR Sensors from the early
2000s allow for capturing high dynamic range with multiple
sampling [49], [35] and variations with overlapping integra-
tion intervals [50], or choosing optimum integration time
[51]. Floating point sensors have great potential, however
they require additional bandwidth. Newer image sensors
such as Sony’s IMX490 read out multiple images at different
gains which then can be merged similarly to bracketed
exposures. However, these strategies also require additional
bandwidth. In Sony’s sensor, they read out 4 times as many
bits as we do, which is significant overhead compared to
our approach. Our work reconstructs an HDR image from a
single captured LDR image, the same bit depth as a conven-
tional LDR sensor, and instead, utilize the programmability
of new sensors for in-pixel irradiance encoding together
computational post-processing of that data.
Exotic Sensors for HDR Imaging. Specialized sensor cir-
cuits have been developed to support spatially varying
pixel and adaptive exposures [35], [52], [53], [54], [55] as
well as logarithmic [34] or modulo [36], [56], [57] irradiance
encoding. Emerging photon-counting sensors can facilitate
HDR imaging, but they are best suited for low-light appli-
cations [58] or observe response functions that are similar
to logarithmic sensors [59]. These systems can be inflexible,

because they are not programmable at the pixel level. Near-
focal-plane sensor–processors [60] include some amount of
computing capabilities in the sensor and related systems
have become programmable [39], [61], [62], [63], [64], [65].
In this work, we use one of these platforms, SCAMP-5 [39],
to prototype modulo encoding and the proposed neural
network–based HDR reconstruction algorithm experimen-
tally.

3 PERCEPTUALLY-BASED HDR IMAGING

The MantissaCam framework comprises an electronic in-
pixel irradiance encoding scheme and a neural network–
based decoding algorithm, which solves the 2D unwrapping
problem to reconstruct the irradiance incident on the sensor.
We discuss these aspects next.

3.1 In-pixel Irradiance Encoding
The image formation model of the MantissaCam is

Isensor (x, y) = q
(
mod

(
logα̃ (I (x, y)) , Imax

))
+ η, (1)

where I describes the spatially varying irradiance (i.e., the
target HDR image) on the sensor, Isensor is the measured
LDR sensor image, logα̃(I(x, y)) = Imax · logα(I(x, y)/Imax),
and η is zero-mean additive Gaussian noise. The parameter
α models a family of logarithmic irradiance response func-
tions. For example, the special case α = 2 of our encoding
scheme is similar to the mantissa encoding of the IEEE 754
standard for floating point arithmetic. Sensor quantization is
modeled by the function q(·). Imax is the maximum allowed
irradiance value before the intensity wraps. This could be
the well capacity of a pixel or a user-defined value that is
slightly lower than that. For more details on implementing
the formation model, please refer to the supplement.

3.2 Irradiance Decoding
The proposed decoding scheme is implemented by two
neural networks. The first takes the wrapped sensor image
as input and predicts the wrap edges, effectively separating
them from the texture edges. The second network predicts
the winding number (i.e., the number of times intensity has
wrapped or the number of times the pixel saturated and
reset) of each pixel from these wrap edges.

To predict either modulo or mantissa wrap edges from a
sensor image, we directly use the “modulo edge separator”
proposed as part of the UnModNet architecture [37]. This
edge separator is a residual-type convolutional neural net-
work (CNN) that takes as input a concatenation of the LDR
sensor image and a Laplacian-filtered copy of the same. We
illustrate our network in Figure 4 and refer the interested
reader to [37] for additional details.

Given the wrap edges and the sensor image as input,
our second network predicts the winding number for each
pixel, W (x, y). For this purpose, features are extracted from
both input images using the lightweight CNN-based feature
extraction layers from [37]. These are fed into an attention
UNet [66] with four downsampling and four upsampling
blocks, with each downsampling block using a strided
convolutional layer and a residual bottleneck block, and
each upsampling block mirroring it but with the addition
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Fig. 4: MantissaCam pipeline. An HDR scene is imaged by a camera with in-pixel processing capabilities, implementing
the proposed irradiance encoding scheme (left). The resulting LDR sensor image encodes lower irradiance values similar to
a conventional camera, but bright image regions, including the lamp and the reflections on the ground, are wrapped rather
than saturated (center). The mantissa-encoded image is first processed by a network that predicts the wrap edges and then
by another network that predicts the winding number (center right), the number of times the pixel saturates and resets.
The per-pixel winding number, together with the mantissa-encoded image, are used to reconstruct the HDR image (right).
The symbols ∆, ◦, and + denote channel-wise Laplacian operators, channel concatenation, and addition, respectively.

of attention gates. This is a standard neural network archi-
tecture, but its application to directly predicting the winding
number of irradiance-wrapped images is new. Note that this
part of our algorithm is substantially different from the iter-
ative, graph-cuts inspired unwrapping procedure proposed
in [37]. Their method aims at unwrapping the HDR image
layer by layer, which is prone to propagating errors, whereas
our approach directly predicts the number of wraps, i.e.,
the winding number, using a single pass through the UNet.
We discuss additional details of this network architecture in
the supplement and outline the training procedure of both
networks in Section 3.4 and the supplement.

Given the predicted winding number for each pixel as
well as the raw sensor Isensor, we formulate the reconstruc-
tion of the HDR image Ĩ as

Ĩ (x, y) = Imax·αIsensor/Imax+W (x,y). (2)

In our implementation, we choose α = 2.

3.3 Understanding the Relation between Resolution
and Dynamic Range

The theory addressing the ability to perfectly reconstruct
a signal with MantissaCam falls within the framework of
unlimited sampling recently developed in [45], [67]. Here,
rather than formally treating the reconstruction problem,
we attempt to highlight the advantages of a mantissa over
a modulo encoding and develop an understanding of the
tradeoffs between those.

Let us consider the 1D band-limited irradiance function
I(x), with maximal frequency fmax. The irradiance is en-
coded on the sensor by the wrapping function W of the
imaging model:

W : I ∈ R+ 7→ W(I) ∈ [0, Imax]. (3)

In particular, we consider the two wrapping functions:

Wmod(I) = I −W
(
I(x)

)
· Imax, (4)

and

Wmant(I) = logα̃(I)−W
(
logα̃ I(x)

)
· Imax, (5)

with W
(
·
)
=

⌊
·

Imax

⌋
and ⌊·⌋ being the floor function.

In order to avoid aliasing on our discrete sensor array,
we assume the sampling of I respects the Nyquist sampling
criterion fs > 2 · fmax, with the sampling frequency fs
related to the inverse pixel pitch Ts = 1

fs
(i.e. the resolution

or pixel density, for instance expressed in line pairs per
millimeter) of the sensor array.
Recoverability of irradiance from modulo and mantissa
encodings To get an intuition about the irradiance fields
W(I) that can be perfectly reconstructed, let us consider the
discretized irradiance I[n] = I(n · Ts) as seen by a pixel n.

If a wrap of W(I) occurs within a pixel, information is
lost and it is impossible to reconstruct the incident irradi-
ance field. Therefore, a set of conditions to recover the field
is: {

|W(I[n+ 1])−W(I[n])| ≤ Imax,

|W (I[n+ 1])−W (I[n])| ≤ 1,
(6)

where the first condition derives from the Euclidean Di-
vision Lemma and makes sure we cannot wrap “within”
a pixel, the second condition allows at most one wrap
between two pixels.

For the modulo encoding those conditions translate into∣∣I[n+ 1]− I[n]
∣∣ ≤ Imax, (7)

and for the mantissa encoding we have that∣∣ logα̃(I[n+ 1])− logα̃(I[n])
∣∣ ≤ Imax. (8)

This shows that while the modulo encoding can re-
construct any irradiance with arithmetic growth of Imax, a
mantissa encoding can reconstruct a larger class of functions
with geometric growth of Imax.
Dynamic range. For both types of encoding, these results
imply an interesting tradeoff between the dynamic range
of the sensor and its spatial resolution. With two sensors
of the same size, using different pixel pitches Ts and T ′

s

such that T ′
s > Ts, the sensor with a smaller pixel pitch

Ts (i.e., of higher resolution) can reconstruct faster spatial
variations of irradiance ( Imax

Ts
> Imax

T ′
s

in the modulo case).
Therefore, there is a relationship between the maximum
dynamic range recoverable for a sensor given its resolution.



For two sensors of fixed size with N pixels, the maximum
recoverable irradiance is a ramp starting at pixel n = 0
and ending at pixel n = N − 1. In this setting, the sensor
with modulo encoding can reconstruct a maximum dynamic
range of DR ≈ 10 log(N · Imax)dB while the one with a
mantissa encoding can recover a much wider dynamic range
of DR ≈ 10 ·N log(Imax)dB.
Quantization. The ultra-high dynamic range of the mantissa
encoding comes at the expense of loss of precision. In
practice, no sensor has infinite bit depth but is quantized
to 8–12 bits. As shown in the bottom graphs of Figure 2,
the same number of levels are distibuted on a much wider
range as the winding number W increases. This means a
MantissaCam cannot resolve irradiance with the same pre-
cision ModuloCam can at high irradiance levels—the quan-
tization error is higher for our encoding. Yet, early psycho-
physics studies [68] noted that perceived light intensity is
proportional to the logarithm of the light intensity. This is
known as Fechner-Weber law. Likewise when displaying
an HDR image, displays have limited dynamic range, so
tonemapping is performed which allocates more precision
to lower irradiance values. Together, these imply that the
coarser quantization of MantissaCam at high irradiance
levels might not be perceptually important.

3.4 Dataset and Implementation Details

For a fair comparison, the dataset used to train and evaluate
our model was the same dataset created by UnModNet [37].
We randomly split the images into 400 training images and
193 testing images. We used the same process to augment
the training dataset, over-exposing and cropping images to
yield a total of 5,945 training images.

We train our networks in three stages. First, we train
the wrap edge prediction network by itself for 400 epochs,
taking simulated sensor images as input, using a binary
cross entropy loss with the ground truth wrap edge im-
ages obtained via simulation. Second, we train the winding
number prediction network by itself for 200 epochs, taking
simulated sensor images and ground truth wrap edges as
input, using a mean-squared error (MSE) loss on the ground
truth winding number. Third, we train both networks jointly
for another 200 epochs using the same MSE loss on ground
truth winding number. Additional implementation details
are found in the supplement.

4 EXPERIMENTS

4.1 Evaluation on Synthetic Data

Figure 5 qualitatively and quantitatively compares modulo
and mantissa encoding schemes combined with different
reconstruction algorithms. Using a single modulo-wrapped
image as input, graph cuts perform poorly [36]. The Un-
ModNet network [37] does reasonably well in some cases,
but struggles to reconstruct the large bright parts of the
first example scene and the lights on the bridge of the
third scene. Their iterative unwrapping procedure some-
times fails in stopping to unwrap, which results in extremely
high irradiance values lowering their PSNR and obscuring
fine image detail. Our algorithm achieves a better quality
than these methods on the same modulo-encoded images,

as evaluated by the peak signal-to-noise (PSNR or P), struc-
tural similarity (SSIM or S), multiscale structural similar-
ity (MS-SSIM), learned perceptual image patch similarity
(LPIPS), and quality (Q) score of the perceptual HDR Visual
Difference Predictor (HDR-VDP-3) [69] metrics. We use
standard definitions of PSNR and SSIM (see supplement).
The Learned Perceptual Image Patch Similarity (LPIPS) met-
ric evaluates the distance between images. Lower numbers
indicate higher perceptually similarity. The HDR-VDP3 Q-
Score predicts image quality degradation with respect to the
reference image, the max quality being 10. Moreover, when
combined with the proposed mantissa irradiance encoding
scheme, our framework achieves the best results among all
of these methods.

Table 1 also quantitatively compares all of these ap-
proaches using several different metrics on the test set of
the dataset described in Sec. 3.4. In addition to the above
methods, we also include a comparison to a CNN operating
directly on a conventional LDR sensor image to hallucinate
the HDR scene [19] in Table 1. Not shown are the results
from the combination of the UnModNet architecture with
the mantissa encoding. The average PSNR was less than
10 dB due to UnModNet’s iterative unwinding. It is prone
to propagating errors and with the mantissa encoding, the
errors are “exponentially” propagated. As shown in Table 1,
the proposed mantissa encoding scheme combined with our
reconstruction framework achieves the best results using all
metrics, outperforming the state of the art, i.e., UnModNet,
by almost 8 dB of PSNR. We also include spatial quality
maps in Fig. 6 as well as additional maps in the supplement.

All simulations with synthetic data are run on noise-free
images to study the upper bound of all of these algorithms.
However, we do include results of simulations with simu-
lated sensor noise in the supplement and also evaluate the
best-performing algorithms on noisy captured data in the
following.

4.2 Prototyping a Modulo Camera using SCAMP-5
We build a physical prototype using an example of an
emerging class of sensors, dubbed focal-plane sensor–
processors [60], that embed small processing circuits in-

Encoder Modulo Mantissa None
Decoder Graph Cuts [36] UnModNet [37] Ours Ours CNN [19]

PSNR (↑) 21.4 29.5 32.2 37.4 22.7*
Q Score (↑) 5.89 9.08 8.94 9.30 —
SSIM (↑) 0.80 0.79 0.84 0.97 0.72*
MS-SSIM (↑) 0.82 0.91 0.93 0.99 0.76*
LPIPS (↓) 0.29 0.12 0.10 0.03 —

TABLE 1: Quantitative evaluation of modulo and mantissa
in-pixel encoding combined with various reconstruction
algorithms for simulated data. Our irradiance unwrapping
network performs better than existing algorithms on the
modulo encoding, as evaluated by several metrics. Com-
bined with the proposed mantissa encoding, our approach
achieves state-of-the-art results. We also show the quality
of a CNN working with conventional LDR images using
the same dataset. Values marked with * are reproduced
from [37].



Modulo MantissaGraph Cuts UnModNet Modulo + Ours Mantissa + Ours Ground Truth

P: 19.25  S: 0.610  Q: 5.97 P: 20.54  S: 0.979  Q: 8.22 P: 20.33  S: 0.888  Q: 7.59 P: 33.31  S: 0.982  Q: 9.46

P: 21.45  S: 0.746  Q: 6.43 P: 25.24  S: 0.990  Q: 9.22 P: 23.69  S: 0.911  Q: 9.05 P: 30.38  S: 0.994  Q: 9.51

P: 32.63  S: 0.804  Q: 7.92 P: 33.75  S: 0.971  Q: 8.28 P: 35.38  S: 0.932  Q: 8.36 P: 38.41  S: 0.974  Q: 9.66

Fig. 5: Evaluation of encoding and decoding schemes in simulation. A conventional modulo encoding wraps the irradiance
of a scene into an LDR sensor image (column 1). A graph cuts–based reconstruction algorithm [36] usually performs
poorly (column 2) whereas the recently proposed UnModNet architecture [37] often estimates reasonable HDR images
(column 3). Yet, the proposed reconstruction framework works best among these methods (column 4). Moreover, the
proposed mantissa encoding scheme (column 5) induces fewer irradiance wraps making it easier to reconstruct the HDR
image using our framework (column 6). Our approach achieves reconstructions closest to the ground truth (column 7). ‘P’,
‘S’, and ‘Q’ indicate the PSNR, SSIM and Q-score for each reconstruction method.

side each pixel. We use SCAMP-5 [39], whose processing
elements (PE) are programmable in a single instruction
multiple data (SIMD) fashion, similar to a GPU where the
same instruction is performed for all processing elements
simultaneously on some local piece of data. Specifically, a
PE is equipped with a few analog and digital memories.
Instructions can be performed as light is being collected
by the pixel’s photo-sensitive element, thus enabling to
change the way integration is performed, as required for our
implementation. We include a circuit diagram of a single
PE in Fig. 7b. For more information on the SCAMP-5, we
refer the reader to [39]. In other SCAMP versions, there is
log circuitry that would allow us to take mantissa images,

however, our version does not have this capability. We are
still able to implement the modulo camera and show the
benefits of our reconstruction method over previous state-
of-the-art methods.

In our implementation of a modulo camera, an exposure
consists of N iterations of length δt (that is programmable
and sets the total exposure as ∆T = N ·δt). At each iteration,
the pixel compares whether the accumulated irradiance PIX
at the photosensitive element is above a threshold Imax.
Whenever the threshold is exceeded, the pixel is reset and
a 6-bits pixel-wise digital counter is incremented. This is
summarized in the pseudo code of Algorithm 1.
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Fig. 6: We show the tonemapped HDR image and the
HDR-VDP-3 Q scores and quality maps of UnModNet’s
reconstruction and our reconstruction. The maps shows
the contrast-normalized per-pixel difference weighted by
the probability of detection. Red corresponds to a large
perceived difference and blue a low perceived difference.

Algorithm 1: Pseudo code describing our implemen-
tation of a Modulo Camera. The for-loop highlighted
in grey can be thought of as “parallel-for” executed
by all the pixels simultaneously. PIX is a variable
representing the photosensitive element whose value
is at any instant the integrated value of irradiance from
the last pixel reset (one can alternatively think about
every inner loop incrementing PIX by the irradiance
Ii · δt where δt is the time it took to perform the inner
loop.

repeat for all frames
n← 0
gaini ← 1

for all pixels i do
PIXi ← 0
while n < N do

if PIXi ≥ Imax then
PIXi ← 0
cnti ← cnti + 1

n← n+ 1
readout winding number in cnti
readout modulo in PIXi

4.3 Experimental Results

We use SCAMP-5 to prototype a modulo camera and cap-
ture HDR scenes outside (see Fig. 7a). This sensor records
grayscale images with a resolution of 256 × 256 pixels.
For this experiment, we retrained both UnModNet and
our network on modulo images using the same training
procedure described in Section 3.4, but on grayscale images
captured with SCAMP-5. For this purpose, we collected
a dataset of 14,810 modulo and corresponding reference
HDR images using the SCAMP-5 prototype. We split this
dataset into 13,329 training images and 1,481 test images. No
artificial data augmentation was performed. We trained a

(a)

(b)

Fig. 7: (a) Prototype camera capturing an outdoor HDR
scene. (b) A circuit diagram for each PE of SCAMP-5,
courtesy of Piotr Dudek.

single edge predictor network that we used for UnModNet’s
iterative unwrapping approach and also as part of our own
pipeline. This network was trained for 150 epochs using the
experimentally captured dataset.

Figure 8 shows captured modulo images, the
tonemapped reconstructions, and a tonemapped reference
HDR image. The captured images include sensor noise,
which is especially noticeable around the irradiance wraps.
The graph cuts and UnModNet algorithms usually fail to
estimate reasonable HDR images, likely due to the noise
in the sensor images. For more recognizable results, we
limited the number of unwrappings for UnModNet to a
maximum of five iterations. Otherwise, the reconstructions
end up completely white. The dynamic range of this scene
is far greater than that of the sensor, yet our method is able
to reconstruct HDR images with high quality.

Table 2 shows the comparison of graph cuts, UnModNet,
and our method averaged over the test set captured with the
SCAMP-5. We compare PSNR, Q score, SSIM, MS-SSIM, and
LPIPS scores. Across all metrics, ours outperforms previous
methods by a large margin.
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Modulo Graph Cuts UnModNet Ours Reference HDR
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Fig. 8: Experimental results. Using a programmable sensor, SCAMP-5, we capture (noisy) modulo images (left) and process
them using graph cuts, UnModNet, and our network applied to the captured modulo data. Tonemapped results using all
these reconstruction methods as well as a reference HDR image are shown for several different scenes.

Encoder Modulo
Decoder Graph Cuts [36] UnModNet [37] Ours

PSNR (↑) 20.3 15.2 33.7
Q Score (↑) 3.81 4.55 7.32
SSIM (↑) 0.27 0.52 0.85
MS-SSIM (↑) 0.23 0.59 0.95
LPIPS (↓) 0.14 0.12 0.09

TABLE 2: Quantitative evaluation of modulo in-pixel en-
coding combined with various reconstruction algorithms for
experimentally captured data. Our algorithm processing the
same modulo images as the others achieves significantly
better results in all relevant metrics.

With our single-shot HDR image unwrapping method,
we can also capture short HDR video clips, which would
have been difficult to do with conventional HDR methods
like bracketed exposures. In Fig. 9, we show a sequence of
modulo-encoded frames that we captured while moving the
camera. We also show tonemapped reconstructions using
UnModNet and our network. Our method unwraps the
modulo video sequence with high temporal consistency and
good quality, while lots of flickering and poor image quality
are observed for UnModNet. Video clips of these and other
example scenes are included in the supplemental material.

5 DISCUSSION

Motivated by the emerging class of programmable sensors,
we demonstrate new capabilities they could enable for the
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Fig. 9: HDR video experimental results. We show 10 frames of two captured modulo video sequences, UnModNet’s
reconstruction, and our reconstruction. Our reconstruction shows temporal consistency and good image quality whereas
UnModNet typically fails to estimate reasonable results.

long-standing challenge of snapshot HDR imaging. For this
purpose, we develop a reconstruction algorithm for the
modulo camera that is more robust and achieves better
results than the current state of the art. Moreover, we
introduce the mantissa encoding scheme that is inspired by
the human visual system and achieves a favorable tradeoff
between dynamic range, spatial frequency, and precision
when encoding HDR scenes compared to the modulo cam-
era. We evaluate our system in simulation but also show
preliminary results captured with a prototype SCAMP-5
programmable sensor, demonstrating the effectiveness of
our reconstruction algorithm on the modulo camera. The
global shutter speed in our simulations and with the proto-
type are always set to capture the desired level of detail in
the dark regions, relying on the encoder and reconstruction
algorithm to recover the brightest parts of the scene.
Limitations and Future Work. Although promising, the
proposed system has several limitations. First, our recon-
struction pipeline improves results over existing work by a
large margin, yet it fails in some cases as shown in Figure 10.
Thus, there is room for further improving the robustness of
the algorithm. Other future directions include evaluating the
usefulness of our unwrapping network architecture in other
problems, such as in classical phase unwrapping. Second,
our mantissa-based encoding scheme is intuitive and robust,
but the base (α) of the logarithm could be optimized in the
future. Furthermore, the question of what an optimal encod-
ing scheme for HDR imaging or other applications remains.

Some prior work has studied end-to-end-optimized in-pixel
irradiance encoding [30], which could be a fruitful direction
for (un)wrapping-based HDR cameras, such as ours. Yet,
optimizing periodic objective functions, such as modulo and
mantissa-like functions, is not trivial and requires additional
research. Third, the class of computational HDR cameras we
discuss here seeks to improve the dynamic range of sensors
for bright scene parts, but it does not necessarily improve
the black level or performance in low-light conditions. It
would be valuable to study how in-pixel intelligence offered
by programmable sensors could help imaging in low-light
scenarios, although this is beyond the scope of our work.
Fourth, in our experiments we ignore the effect of the color
filter array (CFA), primarily because our prototype is gray-
scale.

SCAMP-5 is a valuable tool and offers many unique
capabilities and a software interface for researchers to do
rapid-prototyping. However, it also has limitations includ-
ing a high read noise level, low pixel fill factor, low resolu-
tion, and lack of color filters. Improving these aspects with
newer processes, circuit design, 3D fabrication techniques,
and improved firmware engineering could make this or
related platforms better and more accessible to the com-
putational photography community. But, there may still be
a few challenges. As seen with logarithmic cameras today,
uniformity per-pixel is difficult. This non-uniformity in the
log-circuitry may need to be tackled for the MantissaCam to
be widely adapted. But, with advances in fabrication tech-
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Fig. 10: Limitations. Challenging areas for unwrapping often
include regions with high spatial detail and wrapping or
dense edges where it may be difficult for the networks to
differentiate between wrap and texture edges. While our
method is able to better reconstruct some of these areas
than a modulo camera with the UnModNet algorithm, some
artifacts remain.

niques, along with 3D stacking to allow for more circuitry
at the pixel level, eventually MantissaCam could become a
promising way to capture huge dynamic ranges.
Conclusion. The emerging class of programmable sensors
enables in-pixel intelligence, offering new imaging capa-
bilities for computational photography systems. While our
system demonstrates a new co-design of in-pixel irradiance
encoding and decoding for snapshot HDR imaging, many
other applications in computer vision, photography, and
autonomous driving could be enabled by this platform. Our
work takes first steps towards the vision of adaptive and
domain-optimized computational cameras.
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